Michigan Forests

- Pleistocene glacial history
- Holocene movement of species and vegetation
- Presettlement vegetation and flora
- Postsettlement changes to vegetation and flora
Continental glacial history of Michigan

- Vegetation and ecology of Great Lakes region impacted by Pleistocene glaciation over last 2-2.3 million years
Vegetation and ecology of Great Lakes region impacted by Pleistocene glaciation over last 2-2.3 million years

Wisconsin glaciation (last epoch) most important
Assembly of flora (species composition) and vegetation (ecological community types) of most Great Lakes was during end of last glacial and the Holocene (18,000 years ago to present)
Louis Agassiz [1807-1873]

Christian Swiss geologist who studied mountain glaciation

First scientist to articulate continental glaciation in the northern hemisphere

His subsequent studies of North American glacial began the study of the field of continental glaciation

“God did not allow glaciation without a purpose”
What evidence did Agassiz see?

- ice scouring
- glacial outwash till
- drainage channels
- temporary glacial lakes
- kettle lakes
- moraines
- perched dunes
- plant and animal “disjunct” distributions
End moraines are some of the most visible “footprints”

Formed as ice front “stagnated” for a time and deposited large amounts of unsorted rock, pebbles, sand, and clay

Contain forests that are on richer soil types (nutrients held in clay) with good water retention — mesic forests
A summary of Michigan’s lower peninsula glacial geology

Au Sable is in an unique region geologically that exhibits many different ecological conditions and thus plant vegetation types.
Great Lakes Region during the Quaternary

The ice-ages (Pleistocene Epoch) included about 20 glacial advances followed by 20 interglacials over the last 2 million years.

We are now in the last interglacial called the Holocene Epoch, which followed the most recent glacial ice age called the Wisconsin.
The ice-ages (Pleistocene Epoch) included about 20 glacial / interglacials over the last 2 million years.

Last interglacial called the Holocene Epoch and followed the last glacial - Wisconsin.

“Paleothermometers” indicate that these ice ages occurred on a cycle about 100,000 years.
Wisconsin glaciation reached a climax at 18,000 years ago. Tundra conditions existed at the margins of ice lobes. How do we know what vegetation and flora occurred further south of the ice?
Paleobotanists have been aided by the record of plant remains in lakes and bogs. Pollen (especially from trees) is the single most important record that has been used to track vegetation changes following ice retreat.
Yearly deposits accumulate in lake bottoms to be covered by silt in layers, or in bog peat.

pine pollen from Big Twin Lake
Pollen record of White Pond, South Carolina

- Note boreal elements (spruce) early in the record
Pleistocene - the Ice Ages

- Boreal forest zone to 33°S
- Mixed deciduous forest zone near Gulf
- 18,000 ya harshest conditions; zones were further north earlier

18,000 ya

28 - 25,000 ya
Pleistocene - the Ice Ages

- Much of eastern North America would have looked like this boreal scene.

White spruce - *Picea glauca*

Most widespread tree in North America

Illinois 16K
Pleistocene - the Ice Ages

- 14,000 ya ice begins retreat
- Vegetation units move north
Holocene - the Ice Retreats

- 14,000 ya ice begins retreat
- Vegetation units move north
- Proglacial lakes form
- St. Lawrence Seaway exposed

13,000 ya

Lake Agassiz

11,000 ya
Holocene - the Ice Retreats

Formation of extensive pro-glacial lakes; drainage first through Grand River, Lake Chicago, and Mississippi River; later through St. Lawrence Seaway
- Pollen record shows waves of vegetation over time
- Boreal elements (spruce) early in the Holocene, followed by pine communities, and then oak, maple, and other hardwoods
Assembly of Great Lakes Flora

Shifts of vegetation belts starting at about 13,000 ya

- tundra
- boreal
- spruce-pine
- pine-spruce-hardwood
- mixed hardwood
- oak-hickory

Key:
- glacier
- tundra
- boreal parkland
- wetlands
- proglacial lakes
- spruce-pine forest
- spruce forest
- pine-spruce-hardwood forest
- mixed conifer and northern hardwood forest
- swamp hardwood forest, marshes and wetlands
- northern hardwood forest
- mixed pine forest
- pine-oak forest
- oak-hickory forest
- beach-maple forest
- prairie/oak savanna
Coniferous species migrated into the Great Lakes region in waves: Boreal species like spruce, tamarack, and balsam fir arrived first.
Assembly of Great Lakes Flora

Coniferous species migrated into the Great Lakes region in waves: Boreal species like spruce, tamarack, and balsam fir arrived first.
Coniferous species migrated into the Great Lakes region in waves: Boreal species like spruce, tamarack, and balsam fir arrived first.
Coniferous species migrated into the Great Lakes region in waves: Xeric pine species like jack pine and red pine arrived next.
Coniferous species migrated into the Great Lakes region in waves: followed by more mesic white pine
Coniferous species migrated into the Great Lakes region in waves: **Hemlock**, characteristic of mesic Northern Hardwood forests, arrived last.
Assembly of Great Lakes Flora

Angiosperm hardwoods migrated into the Great Lakes region in waves

Oaks, hickories and elms arrived first - 11,000 ybp
Assembly of Great Lakes Flora

Angiosperm hardwoods migrated into the Great Lakes region in waves

Followed by mesic-loving maples
Assembly of Great Lakes Flora

Angiosperm hardwoods migrated into the Great Lakes region in waves

And finally American beech last
Rate of species migration (shown in the chart below as miles per year) is dependent on a number of factors:

- location during Pleistocene
- ecological climate envelope of each species
- type of seed/fruit dispersers
- seed dispersal rate (seed/fruit weight given in milligrams)
Assembly of Great Lakes Flora

Importantly, the different species of trees (and herbs) entering the Great Lakes region after the glaciers retreated entered via different refugia or survivia.

White pine from the Alleghenian refugium

Oaks from either the Alleghenian (white oak) or Ozarkian (black oak) refugia
Assembly of Great Lakes Flora

Species migrating into the Great Lakes region ended up in specific regions and associated with specific groups.

Two major biotic associations exist in the Great Lakes region:

1. northern hardwood-conifer forest
Assembly of Great Lakes Flora

Species migrating into the Great Lakes region ended up in specific regions and associated with specific groups.

Two major biotic associations exist in the Great Lakes region:

1. northern hardwood-conifer forest
2. eastern deciduous forest
Assembly of Great Lakes Flora

Species migrating into the Great Lakes region ended up in specific regions and associated with specific groups.

Two major biotic associations exist in the Great Lakes region:

1. northern hardwood-conifer forest
2. eastern deciduous forest

These two associations are separated by a fairly sharp tension line or zone.
Presettlement forests in the Great Lakes region

This tension zone is quite evident if presettlement forest types are placed onto a map of lower Michigan.

The line dividing the Northern Hardwood - Conifer plus Pine-Oak Forests from the southern Beech-Maple and Oak-Hickory Forests essentially is the tension line.
However, the tension line is actually defined on the basis of plant distributions: the northern limit of southern species, and the southern limit of northern species.

Where exactly this tension line is located has been a source of some contention.
Within each association in the Great Lakes region are plant communities. We will focus our study of the Great Lakes at this level.

We will start today in the Northern Hardwood, but will later examine:

- Mixed Pine community
- Xeric Pine community
- Boreal community
- Conifer Bog community
- Dune community
- Riparian community
How do we know what presettlement forests or community types were actually present?

The General Land Office surveys of the 1800s required that a rectangular system of land survey be done. Trees nearest each quarter section corner were bark-slashed, identified, and dbh recorded.

Fig. 5.1. The basic units of land division in the rectangular system of land survey. A normal township contains 36 sections of one square mile each. Each section contains 640 acres and can be divided into four quarter sections of 160 acres each or 16 quarter-quarter sections of 40 acres each.
Presettlement forests in the Great Lakes region

Shown here is such a “Witness Tree” from the NE corner of section 18 in Hamlin Township (R18W, T19N) north of Ludington, Michigan.
Presettlement forests in the Great Lakes region

Shown here is such a “Witness Tree” from the NE corner of section 18 in Hamlin Township (R18W, T19N) north of Ludington, Michigan.

A close up of the slashed tree shows the original surveyor’s marks:

\[
\begin{align*}
R & \ 18 \ W \\
T & \ 19 \ N \ 18
\end{align*}
\]
Presettlement forests in the Great Lakes region

Stakes and witness trees now replaced by permanent sectional markers – here seen during an Integrative Session
Ecologists analyzed surveyors’ records deposited in the state capital to infer the original plant communities prior to European settlement.
Ecologists analyzed surveyors’ records deposited in the state capital to infer the original plant communities prior to European settlement.

Au Sable is located in the vicinity of Northern Hardwoods, Pine-Oak and Conifer Swamp forest types.
Presettlement forests in the Great Lakes region

Northern Hardwood forest
Presettlement forests in the Great Lakes region

Northern Hardwood forest - sampled