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1. Introduction
Disjunct distributions of closely related organisms 
are one of the most curious types of spatial patterns 
in organismal biology (Darwin, 1859; Wallace, 1880; 
Raven, 1963, 1972; Wen 1999; Simpson et al., 2017). 
Disjunctions occur when populations or lineages within 
or between taxa are discontinuous and can be regional 
(e.g., on either side of a mountain), intracontinental (e.g., 
on opposite sides of a continent), intercontinental (e.g., 
on continents which are not presently contiguous), or 
global (e.g., amphitropical disjunctions). Of these types of 
disjunctions, intercontinental and global disjunctions have 
served as classic examples of the phenomenon and are 
perhaps the best studied, with some of the most notable 
examples in plants being those between western Africa 
and South America (Givnish et al., 2004; Renner, 2004), 
and between eastern Asia and North America (Xiang et 
al., 1998, Wen, 1999, 2001; Donoghue and Smith, 2004; 
Wen et al., 2010, 2016). Disjunctions may arise through 
processes such as vicariance via geological processes, long-
distance dispersal (i.e. founder event) from propagule 

movement, and/or short distance dispersal(s) followed 
by local extinction. Given that similar intercontinental 
disjunctions are also found across distantly related 
organisms, it has been argued that these patterns might be 
best explained as a result of vicariance; however, analyses 
using modern phylogenetic hypotheses well-calibrated 
with carefully scrutinized fossils across a diversity of plant 
lineages instead suggest that most of these patterns are 
better explained by long distance dispersal alone or long 
distance dispersal in concert with vicariance (Givnish et 
al., 2004; de Queiroz, 2005; Barker et al., 2007; Clayton et 
al., 2009; Dupin et al., 2017; Ruhfel et al., 2016; Drew et al., 
2017; Simpson et al., 2017).

The angiosperm order Saxifragales consists of 15 
families that encompass about 2500 species (APG IV, 2016), 
and are sister to rosids (Soltis et al., 2011; APG IV, 2016). 
Saxifragales are diverse ecologically and morphologically, 
and also possesses an intriguing extant geographical 
distribution that features several different types of 
intercontinental disjunctions. Although Saxifragales 
are most species-rich in the Northern Hemisphere, 
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several families within the order are either more diverse 
or currently restricted to the Southern Hemisphere, 
with some narrowly endemic and ostensibly relictual in 
the Southern Hemisphere (e.g., Aphanopetalaceae and  
Tetracarpaeaceae).

The diverse morphology and distribution within 
Saxifragales, along with a lack of clear synapomorphies, 
has caused considerable taxonomic uncertainty regarding 
relationships amongst the constituent families in the past, 
but during the past 25 years major progress has been 
made in understanding relationships within Saxifragales 
and in circumscribing families within the order (Morgan 
and Soltis, 1993; Soltis et al., 1990, 2000, 2013; Soltis and 
Soltis, 1997; Hoot et al., 1999; Fishbein et al., 2001). With 
the recent addition of the previously controversially placed 
holoparasitic Cynomoriaceae in Saxifragales (Nickrent 
et al., 2005; Jian et al., 2008; Zhang et al., 2011; Bellot et 
al., 2016; Folk et al., 2019, 2021), the order now seems 
taxonomically stable at the familial level. However, the 
exact placement of Cynomoriaceae within Saxifragales is 
still unclear (APG IV, 2016; Bellot et al., 2016; Folk et al., 
2019). Some of these studies have also shown weak support 
for the placement of Peridiscaceae, an enigmatic family 
atypical for the order due to the presence of large seeds 
and an exclusively tropical distribution (Davis and Chase, 
2004; Soltis et al., 2007), but which is possibly sister to the 
remainder of the order (Soltis et al., 2007; Jian et al., 2008; 
Folk et al., 2019). Excluding Peridiscaceae, Saxifragales 
can be grouped into three major clades. A clade of 
largely woody plants comprised of families Altingiaceae, 
Cercidiphyllaceae, Daphniphyllaceae, Hamamelidaceae, 
and Paeoniaceae (which are nonwoody) sister to the 
rest of the families within this clade (Moore et al., 2011; 
Soltis et al., 2011; but see Folk et al., 2019, 2021), hereafter 
referred to as the PWC (Paeoniaceae + woody clade). The 
PWC is sister to the Core Saxifragales (Jian et al., 2008), 
which contains the remaining two major subclades. The 
first of these subclades is comprised of Aphanopetalaceae, 
Crassulaceae, Haloragaceae, Penthoraceae, and 
Tetracarpaeaceae (Morgan and Soltis, 1993) and has been 
referred to as the Haloragaceae/Crassulaceae clade (Jian et 
al., 2008). The second subclade includes Grossulariaceae, 
Iteaceae, and Saxifragaceae (Soltis et al., 2007), commonly 
called the Saxifragaceae alliance (Fishbein et al., 2001; 
Soltis et al., 2007; Jian et al., 2008; Stubbs et al., 2020).

As with several other angiosperm orders such as 
Caryophyllales (Cuénoud et al., 2002; Brockington et al., 
2009; Walker et al., 2018), Ericales (Schönenberger et al., 
2005; Rose et al., 2018), Lamiales (Olmstead et al., 2001; 
Schäferhoff et al., 2011; Refulio-Rodriguez and Olmstead, 
2014), and Malpighiales (Wurdack and Davis, 2009; Xi 
et al., 2012), Saxifragales appears to have undergone an 

ancient and rapid diversification (Fishbein et al., 2001; 
Fishbein and Soltis, 2004; Jian et al., 2008). As a result, it 
has proven challenging to resolve deep-level relationships 
within the order (Magallón et al., 1999; Moore et al., 
2007, 2010; Wang et al., 2009; Smith et al., 2010; Soltis et 
al., 2011; Folk et al., 2019). Based upon fossil evidence, 
Saxifragales clearly began to diversify at least 89.5 million 
years ago (Ma; Magallón et al., 1999; Wikström et al., 
2001) but crown age estimates from molecular dating have 
varied widely from 83–118 Ma (Hermsen et al., 2006; Jian 
et al., 2008; Magallón et al., 2015; Tank et al., 2015; Folk et 
al., 2019).

Biogeographically, Saxifragales exhibit several 
different, classic, and/or striking inter- and 
intracontinental disjunction patterns including eastern 
North America/eastern Asia (Hamamelidaceae: 
Hamamelis, Penthoraceae: Penthorum), South America/
western Africa (Peridiscaceae), eastern/western Australia 
(Aphanopetalaceae), eastern North America/eastern 
Asia/South Africa (Hamamelidaceae, Iteaceae), and 
western North America/Mediterranean/eastern Asia 
(Paeoniaceae), making it an ideal clade to examine the 
timing and drivers (long-distance dispersal vs. vicariance) 
of these disjunctions. Despite the striking number and types 
of disjunctions within the order, previous phylogenetic 
studies that have included or focused on Saxifragales 
have not rigorously explored or clarified divergence 
times and biogeographic history of the entire order using 
broad taxon and gene sampling (but see Folk et al., 2021). 
Here, we employ a supermatrix alignment consisting 
of plastid (cpDNA), nuclear ribosomal (nrDNA), and 
mitochondrial DNA (mtDNA) to elucidate intraordinal 
phylogenetic relationships within Saxifragales. We use this 
supermatrix in conjunction with multiple fossil calibration 
points to produce a robust chronogram to examine 
divergence times of major lineages of Saxifragales and 
make ancestral range estimations. Specifically, we focus 
on the following questions: (1) Is Peridiscaceae sister to 
the remaining Saxifragales? (2) Is the current distribution 
of Peridiscaceae a result of vicariance or long-distance 
dispersal? (3) What is the geographic origin of Saxifragales 
and are Australasian families Aphanopetalaceae and 
Tetracarpaeaceae relictual? and (4) Are there similarities 
in timing and underlying biogeographical process across 
lineages of Saxifragales with similar disjunct distributions? 

2. Methods
2.1. Taxon sampling and supermatrix assembly
Initially, we compiled a supermatrix that consisted of 918 
taxa. We iteratively reduced our sampling to 351 samples. 
This sampling strategy largely eliminated taxa that were 
redundant geographically (e.g., Halogoraceae, South 
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African Crassulaceae), and was employed so the dataset 
would be small enough to make analyses using BEAST 
(Drummond and Rambaut, 2007) tractable. Our final 
dataset of 351 taxa included 251 within Saxifragales and 
an additional 100 taxa to serve as an outgroup. The high 
proportion of outgroup taxa relative to the ingroup served 
the dual purposes of providing calibration points outside 
the order as well as providing a broad dating framework. 
The outgroup consisted of representatives from the 
orders Ranunculales [Berberidaceae (1 accession), 
Eupteleaceae (1 accession), Lardizabalaceae (1 accession), 
Menispermaceae (1 accession), Papaveraceae (1 accession), 
Ranunculaceae (1 accession)], Proteales [Nelumbonaceae 
(2 accessions), Platanaceae (3 accessions), Proteaceae (36 
accessions) Sabiaceae (4 accessions)], Trochodendrales 
(Trochodendraceae, 2 accessions), Buxales (Buxaceae, 
7 accessions), Gunnerales [Gunneraceae (6 accessions), 
Myrothamnaceae (2 accessions)], Dilleniales (Dilleniaceae, 
14 accessions), and Vitales (Vitaceae, 18 accessions). 
Ranunculales served as the ultimate outgroup for 
rooting purposes. The 251 accessions within Saxifragales 
represented all families within Saxifragales with the 
exception of Cynomoriaceae. Species level sampling within 
Saxifragales was chosen to encompass as much geographic 
breadth as possible. Our intrafamilial sampling was as 
follows: Altingiaceae (11 species), Aphanopetalaceae (2 
species), Cercidiphyllaceae (2 species), Crassulaceae (60 
species), Daphniphyllaceae (3 species), Grossulariaceae (8 
species), Haloragaceae (29 species), Hamamelidaceae (35 
species), Iteaceae (including Pterostemonaceae, 5 species), 
Paeoniaceae (12 species), Penthoraceae (2 species), 
Peridiscaceae (3 species), Saxifragaceae (78 species), and  
Tetracarpaeaceae (1 species).

The supermatrix dataset was compiled from multiple 
sources. The supermatrix of Soltis et al. (2013) provided 
the bulk of our sampling. This was augmented by samples 
from Deng et al. (2015) and 1 KP data (Matasci et al., 2014). 
The dataset was enlarged through GenBank searches based 
on gene regions added post-2012 [i.e. after the submission 
of Soltis et al. (2013)]. Finally, plastome data from 13 early-
diverging eudicots were included for outgroup taxa (Sun et 
al., 2016). When multiple species were found for the same 
gene region on GenBank, we included only the one with 
the longest sequence. In total, we assembled a data matrix 
of 68 gene regions that represented all three plant genomes, 
chloroplast (63 gene regions; 56,970 nucleotides), nuclear 
(3 regions; 6973 nucleotides) and mitochondrial (2 regions; 
3190 nucleotides; Appendix 1). The external transcribed 
spacer (ETS) and trnL-trnF regions were difficult to align 
across different families, so family-specific alignment 
blocks were created for each region (ETS–Crassulaceae, 
Grossulariaceae, Hamamelidaceae, Saxifragaceae; trnL-

trnF– Crassulaceae, Saxifragaceae; Appendix 1). Each 
gene region was compiled and aligned in Mesquite v. 
3.61 (Maddison and Maddison, 2019). Preliminary trees 
to confirm the orthology of gene regions were computed 
using maximum likelihood as implemented RAxML 
(Stamatakis, 2014) using the Black Box tool on CIPRES 
(Miller et al., 2010). The concatenated supermatrix 
consisted of 67,133 aligned nucleotides. After removing 
519 missing data characters (missing across all taxa), and 
780 characters due to ambiguous alignment, the final 
supermatrix was composed of 65,834 characters.
2.2. Phylogeny and divergence time estimation
Phylogeny and divergence times were estimated 
simultaneously in BEAST v. 1.8.4 (Drummond and 
Rambaut, 2007) on the concatenated, unpartitioned 
supermatrix with indels treated as missing data. We used 
an uncorrelated relaxed lognormal clock and a birth-
death branching process under the GTR + I + G model of 
sequence evolution as suggested by JModelTest2 (Darriba 
et al., 2012). We used six fossil calibration points based 
on their justification in Magallón et al. (2015), Hermsen 
(2013; Iteaceae), and Manchester (2013; Vitaceae), 
five of which were within Saxifragales and one within 
Vitales. Dates were based on the 2019-05 version of 
ChronostratChart (Cohen et al., 2019). Fossil calibrations 
were given a truncated lognormal prior with mean = 2 
(mean = 2.5 for stem of Cercidiphyllaceae) and standard 
deviation = 1 with an offset corresponding to the age 
estimate of the fossil, and a maximum date of 133.4 Ma (see 
below). Fossil priors constrained the stem of Altingiaceae 
with an offset of 89.8 Ma, stem of Cercidiphyllaceae 
with an offset of 56.0 Ma, stem of Haloragaceae with 
an offset of 72.1 Ma, stem of Iteaceae with an offset of 
89.8 Ma, and crown Vitaceae to 66.0 Ma. Magallón et 
al. (2015) constrained crown Hamamelidoideae with 
an offset of 83.6 Ma, but we more conservatively placed 
their fossil on crown Hamamelidaceae with the offset of 
83.6 Ma. Lastly, we constrained the root (eudicot crown) 
with a uniform prior from 129.7–133.4 Ma based on a 
secondary date from Magallón et al. (2015) with minima 
and maxima corresponding to the 95% highest posterior 
density (HPD) for this node. We ran 12 MCMC chains 
for 3.5 × 108 generations each with sampling every 10,000 
generations. Convergence was assessed using TRACER v. 
1.7.1 (Rambaut et al., 2014). Runs were combined using 
LogCombiner v. 1.8.4 after excluding samples from each 
run as a burn-in as appropriate following assessment 
using TRACER, with the burn-in varying from 4.0 × 
107 to 2.0 × 108 generations. The posterior distribution 
of trees was summarized as a maximum clade credibility 
(MCC) tree in TreeAnnotator v. 1.8.4 (Drummond et al., 
2012).
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2.3. Ancestral range estimation
We determined the geography of extant tips using Tropicos1, 
Flora of China2, GBIF3, Flora of Australia4, and Flora of 
North America5. GBIF records were checked as necessary 
following established protocols to ensure accurate species 
distributions from this data depository (Maldonado et al., 
2015; Spalink et al., 2016a, b). Terminals were initially scored 
for presence/absence in the following 12 regions delimited 
on the location of present geographic barriers and previous 
tectonic activity: (1) Northwestern North America west 
of the Rocky Mountains and north of Mexico, (2) eastern 
North America east of the Rocky Mountains and north 
of Mexico including Greenland, (3) southwestern North 
America including Mexico and Central America, (4) western 
South America including the Andes, (5) Guiana Shield, (6) 
southeastern South America, (7) Europe to the Russian 
border including the Mediterranean, (8) northern Africa 
including the Sahara and the Middle East, (9) southern 
Africa south of the Sahara Desert including tropical west 
Africa, east Africa, South Africa, and Madagascar, (10) 
northern Asia west of the Caucasus, north of the Himalaya 
and north of the Indo-China peninsula, (11) southern, 
tropical Asia including India, and Papua New Guinea, and 
(12) Australasia. Given the paucity of occupancy in areas (5) 
and (6), we combined these two areas into one (eastern South 
America) for downstream analyses for a total of 11 areas.

Ancestral range estimation (ARE) was conducted in 
BioGeoBEARS v. 1.1.26 (Matzke, 2012) on the MCC tree with 
outgroups removed, given the cosmopolitan distribution of 
all rosids, the sister clade of Saxifragales. To better model 
geological history, we conducted a time-stratified analysis 
with dispersal multipliers. We implemented the  Dispersal-
Extinction-Cladogenesis  (DEC) model (Ree and Smith, 
2008), testing between models with and without founder 
events (jump dispersal, j parameter in the BioGeoBEARS 
super model). Recent criticism of this parameter and other 
aspects of the model (Ree and Sanmartín, 2018) have been 
1 Tropicos (2021). Missouri Botanical Garden [online]. Website https://www.tropicos.org/home [accessed November 2020].
2 Flora of China (2021). Flora of China Editorial Committee. Flora of China. 2018. Website http://www.efloras.org/flora_page.aspx?flora_id=2 [accessed 
November 2020].
3 Global Diversity Information Facility (2021). GBIF occurrence download [online]. Website https://www.gbif.org/ [accessed October 2020].
4 Flora of Australia (2021). Australian Biological Resources Study, Canberra [online]. Website https://profiles.ala.org.au/opus/foa [accessed November 
2020].
5 Flora of North America Editorial Committee, eds. 1993 onwards. Flora of North America North of Mexico. 19+ vols. New York and Oxford. Website 
http://www.efloras.org/flora_page.aspx?flora_id=1 [accessed November 2020].
6 Matzke NJ (2013). BioGeoBEARS: BioGeography with Bayesian (and likelihood) evolutionary analysis in R Scripts, CRAN: The Comprehensive R 
Archive Network, Vienna, Austria [online]. Website http://cranr-projectorg/package=BioGeoBEARS [accessed December 2020].
7 Matzke NJ (2021). Statistical comparison of DEC and DEC+J is identical to comparison of two ClaSSE submodels, and is therefore valid [online]. 
Website https://doi.org/10.31219/osf.io/vqm7r [accessed December 2020].
8 Matzke NJ (2016). Stochastic mapping under biogeographical models PhyloWiki BioGeoBEARS [online]. Website http://phylo.wikidot.com/
biogeobears#stochastic_mapping [accessed December 2020].
9 Datadryad.org. 2021. Using a supermatrix approach to explore phylogenetic relationships, divergence times, and historical biogeography of Saxifragales: 
Supplementary data [online]. Website https://doi.org/10.5061/dryad.ffbg79cvg [accessed 00 Month Year].

countered and thus remain as valid (Klaus and Matzke, 2019; 
Matzke7). The significance of the fit of the DEC and DECj 
models were tested using a likelihood ratio test. We allowed 
a maximum range size of up to four areas (the maximum 
found in any extant tip). Dispersal probabilities between pairs 
of areas were specified for the following five separate time 
slices (see below) based on known geological events affecting 
geographic distributions within Saxifragales and that have 
been similarly modeled in DEC and DECj analyses in other 
ancient and widespread lineages (e.g., Buerki et al., 2011; 
Berger et al., 2016; Cardinal-McTeague et al., 2016; Spalink 
et al., 2016a, b; Rose et al., 2018). Dispersal probabilities 
among areas were specified for five separate time slices: 0–10, 
10–35, 25–65, 65–90, 90–113 Ma, with dispersal multipliers 
modified in each time slice based on adjacency of landmasses 
at each time. These time slices allowed for testing of the 
importance of continental vicariance and collision as well 
as the role of possible Northern Hemisphere land bridges 
(Tiffney, 1985, 2000; Tiffney and Manchester, 2001; Graham, 
2011). Additionally, we conducted biogeographical stochastic 
mapping (Matzke8; Dupin et al., 2017) in BioGeoBEARS 
with 100 stochastic maps under both DEC and DECj models 
to examine the timing, type, and number of biogeographical 
events, and the number of each class of event (e.g., vicariance, 
sympatry, subset-sympatry, and jump dispersals) given the 
DEC or DECj model was summarized using the “count_ana_
clado_events” function in BioGeoBEARS. Details regarding 
model development, temporal stratification, and dispersal 
probabilities among the geographical regions through time, 
as well as alignment and BEAST files, are provided in the 
supplementary material available on Dryad9.

3. Results
3.1. Phylogenetic inference
Our analysis of the supermatrix of 351 taxa and 65,834 aligned 
bp resulted in a well-supported and resolved phylogenetic 
hypothesis of Saxifragales, with all major backbone nodes 

https://www.tropicos.org/home
http://www.efloras.org/flora_page.aspx?flora_id=2
https://www.gbif.org/
http://cranr-projectorg/package=BioGeoBEARS
https://doi.org/10.31219/osf.io/vqm7r
http://phylo.wikidot.com/biogeobears#stochastic_mapping
http://phylo.wikidot.com/biogeobears#stochastic_mapping
https://doi.org/10.5061/dryad.ffbg79cvg
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having posterior probabilities (PP) > 0.99 and generally 
1.0. All families were recovered as monophyletic with PP 
= 1.0 (Figure 1). Our topology recovers the three major 
clades consistently recovered within Saxifragales as 
monophyletic, all with PP = 1.0: Peridiscaceae, the PWC, 
and Core Saxifragales. We also recover the two subclades 
of Core Saxifragales with PP = 1.0: the Haloragaceae/

Crassulaceae clade and the Saxifragaceae alliance. Our 
tree resolves backbone Saxifragales, strongly suggesting 
that Peridiscaceae is sister to the remainder of the order 
(PP > 0.99).

Within the PWC, Paeoniaceae is sister to Altingiaceae + 
Cercidiphyllaceae + Daphniphyllaceae + Hamamelidaceae 
(PP = 1.0), Altingiaceae is sister to Cercidiphyllaceae 
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Figure 1. BEAST chronogram of Saxifragales pruned to 61 tips out of a total of 251 ingroup taxa selected to represent major 
interfamilial, familial, and infrafamilial crown nodes. Major clades discussed in the text are indicated to the right of the tree. 
Numbers above branches represent posterior probabilities and the blue bars around each node represent the 95% highest 
posterior density of node ages.
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+ Daphniphyllaceae + Hamamelidaceae (PP > 0.99), 
and Cercidiphyllaceae is sister to Daphniphyllaceae (PP 
= 0.86). Within the Haloragaceae/Crassulaceae clade, 
Crassulaceae is sister to the remaining families (PP = 1.0), 
Aphanopetalaceae is sister to Haloragaceae + Penthoraceae 
+  Tetracarpaeaceae (PP = 0.96), and  Tetracarpaeaceae is 
sister to Haloragaceae + Penthoraceae (PP = 1.0). Finally, 
within the Saxifragaceae alliance, we recover Iteaceae 
(including Pterostemonaceae) as monophyletic (PP = 1.0) 
and sister to Saxifragaceae + Grossulariaceae (PP = 1.0). 
3.2. Major divergence times
Crown Saxifragales dates to approximately 107 Ma (95% 
HPD = 100.87–112.30 Ma) and diversified rapidly, with the 
crown ages of the three major Saxifragales clades dating > 
94 Ma (Figure 1). All stem lineages of extant families were 
dated to the Upper Cretaceous at approximately 75 Ma 
(youngest stem ages are Haloragaceae and Penthoraceae), 
although the crown ages for most families were much 
younger. The stem age of Australasian Aphanopetalaceae 
was approximately 87 Ma, while the crown of the family 
is relatively recent at approximately 13 Ma (95% HPD = 
1.90 –28.98 Ma). The stem age of the similarly distributed  
Tetracarpaeaceae dates to approximately 83 Ma. Crown 
Iteaceae, excluding Pterostemonaceae which marks 
the divergence of Choristylis Harv. and Itea L., dates to 
approximately 34 Ma (HPD = 14.45–55.80 Ma). Within 
Peridiscaceae Soyauxia Oliv. diverged from Peridiscus 
Benth. approximately 29 Ma, although there is a wide error 
bar around this age estimate (95% HPD = 8.16–52.85 Ma).
3.3 Ancestral range estimation
The BioGeoBEARS analysis selected the DECj (LnL = 
–604.2, d = 4.3 × 10–3, e = 1.0 × 10–8, j = 0.064) model over 
the DEC model (LnL = –660.4, d = 6.7 × 10–3, e = 6.1 × 10–4) 
(D = 112.3, df = 1, P = 3.1 × 10-26), so we report the results 
of DECj only (Figure 2; S1). The biogeographic origin of 
Saxifragales, the order excluding Peridiscaceae, and the 
Core Saxifragales is ambiguously reconstructed, with the 
area with the highest probability for all three nodes being 
both highly polymorphic and discontinuous (joint Central 
America + southern Africa + east Asia + Oceania) but with 
low probability (P = 0.24, 0.20, and 0.13, respectively). 
Most other major nodes show high probabilities of one 
or more areas: crown Peridiscaceae is reconstructed as 
found in southern Africa (P = 0.80) and crown Peridiscus 
+ Soyauxia is reconstructed as joint southern Africa and 
South America (P = 0.50) with stem Peridiscus originating 
in South America. 

In the PWC all nodes representing superfamilial 
ancestors are clearly reconstructed as found in northern 
Asia, excepting stem and crown Hamamelidaceae which 
were reconstructed as originating in southern Asia (crown 
P = 0.61). In addition, most family stems or crowns in the 
PWC are Asian, and particularly northern Asian, in origin, 

with the exception of stem and to a lesser extent the crown 
Altingiaceae, with an inferred European origin (P = 0.56).

Crown Haloragaceae/Crassulaceae clade is 
ambiguously reconstructed as originating in Australasia 
(P = 0.28), but with a clear signal for an Australasian 
origin of all superfamilial ancestors in the Haloragaceae/
Crassulaceae Clade excluding Crassulaceae (P = 0.98). 
Crown Crassulaceae itself is ambiguously reconstructed as 
originating in southern Africa (P = 0.18). 

Finally, the biogeographic history of the deepest 
nodes of the Saxifragaceae alliance are ambiguously 
reconstructed, with the highest ancestral ranges of the 
crown of the clade being either northern Asia (P = 0.30) 
or northwestern North America (P = 0.11). The stem and 
crown of the Saxifragaceae alliance excluding Iteaceae + 
Pterostemonaceae arose in northern Asia (crown P = 0.41), 
with stem and crown Grossulariaceae + Saxifragaceae 
arising in either northwestern North America or northern 
Asia (crown P = 0.42 and 0.38, respectively), with a clearer 
signal of a northern Asian origin of stem and crown 
Saxifragaceae (crown P = 0.54) but with some probability 
for northwestern North America (P = 0.25) or joint origin 
in northern Asia + northwestern North America (P = 
0.17). There is extensive movement from northern Asia 
to northwestern North America along the backbone of 
Saxifragaceae, with movement back to northern Asia 
within the last 35 Ma. The distribution of Iteaceae + 
Pterostemonaceae is best explained as long distance 
dispersal from northern Asia to Central America when the 
lineage diverged from Grossulariaceae + Saxifragaceae, 
followed by dispersal to eastern North America at the 
divergence of stem Iteaceae, and finally with long distance 
dispersal from eastern North America to Africa giving rise 
to Choristylis.
3.4. Biogeographical stochastic mapping
Stochastic mapping of ancestral ranges indicates that there 
is an average of 327.0 biogeographical events across our 
representative sample of Saxifragales. Of these, a mean of 
136.5 (42%) are dispersal events. An average of 59.5 (44%) 
of all dispersal events are cladogenetic dispersal (founder 
events, parameter j) and the remaining 56% of dispersal 
events are anagenetic dispersal (parameter d). An average of 
17.7 (5.4%) of all events are vicariant events (parameter v). 

Most cladogenetic dispersal and vicariance events 
occur before the early Eocene, with the vast majority of all 
cladogenetic events occurring 65–105 Ma (Figure 3). Most 
cladogenetic events since the Eocene are reconstructed as 
being jump dispersal events. Of 21 notable infrafamilial 
disjunctions highlighted in Table 1, most are best explained 
by jump dispersal rather than vicariance. The timing and 
directionality within disjunction types is variable, but 
some temporal and directional similarities emerge, notably 
multiple jump dispersals from east Asia to western North 
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America 15–25 Ma, jump dispersals from Europe to North 
America 6–9 Ma, and jump dispersal from Asia to Eastern 
North America 3–18 Ma (Table 1).

4. Discussion
Our results represent one of the most comprehensive 
phylogenetic analyses of Saxifragales and is the most 

comprehensive study to date to provide both divergence 
times with an estimate of statistical uncertainty surrounding 
node ages and a formal analysis and discussion of the 
biogeographic history of the order to clarify the causes 
of disjunct geographic distributions. This dataset has 
provided a new, well-resolved phylogenetic framework to 
clarify the 107 Ma history of the order.

Figure 2. Ancestral range estimation (ARE) of Saxifragales under the DECj model pruned to 61 tips out of a total of 251 ingroup taxa 
selected to represent major interfamilial, familial, and infrafamilial crown nodes. Major clades discussed in the text are indicated to 
right of the tree. Node pies represent the most probable ancestral range of each node. In pies with multiple colors, the ancestral range is 
inferred to include all areas indicated in the pie. Note that due to pruning, biogeographic transitions between nodes closer to the tips do 
not necessarily accurately reflect the historical biogeography. See Figure S1 for the complete ARE.
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4.1. Progress towards a robust phylogenetic hypothesis 
of Saxifragales
4.1.1. Ancient Saxifragales divergences
Until recently, the ordinal and family placement of genera 
now included in Peridiscaceae was controversial (Davis 
and Chase, 2004; Wurdack and Davis, 2009). Subsequently, 
phylogenetic studies have suggested that Peridiscaceae 
is sister to the rest of Saxifragales, but generally without 
strong statistical support (Soltis et al., 2007, 2013). 
However, Jian et al. (2008), who used approximately 50kb 
for 25 Saxifragales, recovered Peridiscaceae as sister to 
the remaining Saxifragales with high statistical support. 
More recently, Folk et al. (2019), using 301 protein-
coding nuclear loci, placed Peridiscaceae as sister to the 
PWC in a concatenated analysis with poor support, and 
recovered Peridiscaceae in a polytomy with the PWC and 
Core Saxifragales in a coalescent analysis. This polytomy 
was also found in the dated tree of Folk et al. (2021). Our 
results are more consistent with the results of Jian et al. 
(2008), but it remains unclear whether there is a lack of 
phylogenetic information about this relationship present 
in the dataset of Folk et al. (2019, 2021) or the sister 

relationship of Peridiscaceae/PWC represents a true 
topological conflict between datasets (primarily nuclear 
data in Folk et al. (2019, 2021) and primarily chloroplast 
data in Jian et al. (2008) and the dataset presented in this 
paper). One major difference between this paper and that 
of Folk et al. (2019, 2021) is the number of outgroup taxa 
used in each study. We included 100 outgroup taxa (251 
ingroup) here whereas Folk et al. (2019, 2021) included 14 
(627 ingroup). The different taxon sampling in outgroups 
may influence the different placement of Peridiscaceae in 
the two studies. Apart from the placement of Peridiscaceae, 
the monophyly of and relationships among the major 
clades of Saxifragales are largely congruent with those of 
previous studies (Jian et al., 2008, Soltis et al., 2013; Folk et 
al., 2019, 2021). 
4.1.2. PWC (Altingiaceae, Cercidiphyllaceae, 
Daphniphyllaceae, Hamamelidaceae, and Paeoniaceae 
clade)
Familial relationships within the PWC are identical 
to those in Soltis et al. (2013) and Jian et al. (2008). 
However, those previous studies and this study differ 
considerably from relationships recovered by Folk et al. 
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(2019) in both the concatenated and coalescent analyses, 
where Cercidiphyllaceae is sister to Altingiaceae + 
Hamamelidaceae with strong support in the concatenated 
analysis and nested within Altingiaceae or forming a 
polytomy with Hamamelidaceae and Altingiaceae in 
the coalescent analysis. While our data are uncertain 
about the exact relationships of Cercidiphyllaceae, 
Daphniphyllaceae, and Hamamelidaceae (Figure 1), 
they clearly contradict the placement of Altingiaceae in 
Folk et al. (2019). Again, the source of this discordance 
remains unclear, but merits further study. Relationships 
within the PWC families are consistent with relationships 
around supported nodes in previous studies focusing on 

intrafamilial relationships: Altingiaceae (Ickert-Bond and 
Wen, 2006; with the exception that Indochinese Altingia 
appear nested in the East Asian clade), Paeoniaceae (Sang 
et al., 1997), and Hamamelidaceae (Shi et al., 1998; Xie et 
al., 2010) with the exception of the placement of Mytilaria, 
which differs in its phylogenetic placement between 
nuclear ribosomal and plastid datasets (Xie et al., 2010): 
here it falls in the position suggested based on plastid data 
in Xie et al. (2010) and 301 nuclear loci in Folk et al. (2019).
4.1.3. Haloragaceae/Crassulaceae clade
Relationships among families in this clade are generally 
consistent with previously published studies, with 
Crassulaceae sister to a clade consisting of Aphanopetalaceae 

Table 1. Summary of the type, timing, and directionality of 20 selected intrafamilial, intercontinental disjunctions in Saxifragales. 
Disjunctions are sorted by general pattern and the event type is as reconstructed on the moist likely ancestral state reconstruction. 
Taxa listed reflect the most recent common ancestor (MRCA) node only and the disjunction may involve more than two species. Note 
that due to extensive interchange, Saxifragaceae disjunctions between Asia and Western North America are curtailed to show the older 
disjunctions only. An asterisk (*) indicates nodes lacking a highest posterior density (HPD) of node ages because it is present in the 
maximum clade credibility tree but found in < 50% of posterior trees. 

Disjunction (MRCA) Family Age/HPD (Ma) Event type and direction

W. N. America/Asia

Astilbe rivularis/Saxifragopsis fragarioides Saxifragaceae 14.9 (4.1–26.3) jump dispersal (Asia to N. America)

Leptarrhena pyrolifolia/Tanakaea radicans Saxifragaceae 20.0 (5.5–35.1) jump dispersal (Asia to N. America)

Paeonia anomala/P. brownii Paeoniaceae 20.0 (11.0–29.5) jump dispersal (Asia to N. America)

Saxifraga mertensiana/S. stolonifera Saxifragaceae 26.4 (7.6–46.5) jump dispersal (Asia to N. America)

E. N. America/Asia

Astilbe biternata/A. chinensis Saxifragaceae 3.4* jump dispersal (Asia to E. N. America)

Chrysosplenium iowense/C. lanuginosum Saxifragaceae 18.6 (7.5–29.4) jump dispersal (Asia to N. America)

Hamamelis mollis/H. virginiana Hamamelidaceae 3.6 (0.6–6.2) jump dispersal (E. N. America to Asia)

Itea virginica/I. yunnanensis Iteaceae 12.4 (4.2–21.1) vicariance

Penthorum chinense/P. sedoides Penthoraceae 7.0 (1.0–14.4) jump dispersal (Asia to E. N. America

Central America/Asia

Loropetalum chinense/Matudaea trinervia Hamamelidaceae 12.5 (5.4–19.0) jump dispersal (Asia to Central America)

Molinadendron guatemalense/Sinowilsonia henryi Hamamelidaceae 8.5 (2.7–13.8) jump dispersal (Asia to Central America)

Europe/E. N. America

Chrysosplenium americanum/C. oppositifolium Saxifragaceae 9.1 (2.2–16.4) jump dispersal (Europe to E. N. America)

Fothergilla major/Parrotiopsis jacquemontiana Hamamelidaceae 6.0 (1.3–10.3) jump dispersal (Europe to E. N. America)

Liquidambar orientalis/L. styraciflua Altingiaceae 7.1 (2.0–11.7) jump dispersal (Europe to E. N. America)

Amphitropical

Cascadia nuttallii/Saxifragodes albowiana Saxifragaceae 35.6 (15.4–55.6) jump dispersal (W. N. America to S. America)

Saxifraga balfourii/S. bicuspidata Saxifragaceae 52.5 (39.8–64.7) jump dispersal (Asia to Andes)

Saxifraga cymbalaria/S. moschata Saxifragaceae 5.2* jump dispersal (Europe to S. America)

Gondwanan/Miscellaneous

Dicoryphe stipulacea/Noahdendron nicholasii Hamamelidaceae 9.5 (3.5–15.1) jump dispersal (Africa to Australasia)

Choristylis rhamnoides/Itea virginica Iteaceae 34.3 (14.5–55.8) jump dispersal (E. N. America to Africa)

Peridiscus lucidus/Soyauxia talbotii Peridiscaceae 29.1 (8.2–52.9) vicariance following anagenetic dispersal



TARULLO et al. / Turk J Bot

449

+  Tetracarpaeaceae + Haloragaceae + Penthoraceae (Jian 
et al., 2008; Soltis et al., 2013; Folk et al., 2019). However, 
while we find continued support for Aphanopetalaceae as 
sister to Tetracarpaeaceae + Haloragaceae + Penthoraceae, 
we find less than complete statistical support for this 
relationship (PP = 0.96; Figure 1), which might merit 
further study. Indeed, Folk et al. (2019, 2021) recovered  
Tetracarpaeaceae as sister to Aphanopetalaceae + 
Haloragaceae + Penthoraceae, suggesting potential 
conflict between chloroplast and nuclear data. In addition, 
Folk et al. (2019) recovered Crassulaceae as sister to 
the Saxifragaceae alliance (Grossulariaceae, Iteaceae, 
Saxifragaceae; see below) in their coalescent analysis, as 
opposed to sister to Aphanopetalaceae +  Tetracarpaeaceae 
+ Haloragaceae + Penthoraceae as recovered in Jian et al. 
(2008), Soltis et al. (2013), and the concatenated analyses 
of Folk et al. (2019, 2021). Infrafamilial relationships are in 
in agreement with focused studies in Crassulaceae (Mort 
et al., 2001; Carrillo-Reyes et al., 2009) and Haloragaceae 
(Moody and Les, 2007; Chen et al., 2014) in places where 
relationships are supported in these previous studies. 
4.1.4. Saxifragaceae alliance
As with other clades, major relationships in the 
Saxifragaceae alliance in this study confirm those 
recovered in previous studies (Jian et al., 2008; Soltis et al., 
2013; Folk et al., 2019).

Grossulariaceae, containing only the genus Ribes L., has 
been poorly studied in a molecular phylogenetic context. 
The most recent study on Grossulariaceae phylogenetic 
relationships is from Schultheis and Donoghue (2004), 
but this studied failed to find any support for resolution 
below the sectional level. By contrast, many more 
studies have focused on relationships, divergence times, 
and biogeography of Saxifragaceae. The topology of 
Saxifragaceae recovered in this study is consistent with 
that recovered by previous phylogenetic studies if the 
family (Xiang et al., 2012; Soltis et al., 2013; Deng et al., 
2015), especially with the most recent of the studies (Deng 
et al., 2015). In particular, the phylogenetic placement of 
Saniculiphyllum with the Heucheroid clade was unclear in 
Xiang et al. (2012) while Deng et al. (2015) and Folk et al. 
(2019) placed Saniculiphyllum sister to the Boykinia group. 
4.2. Biogeography of Saxifragales
Our divergence time estimates, while varying widely from 
those of Soltis et al. (2013), are largely in line with those of 
Folk et al. (2019), with some exceptions which are discussed 
below (Figure 4). The similarity of our age estimates to 
those of Folk et al. (2019; Figure 4) are not surprising 
given that their ages are based on a combined penalized 
likelihood/BEAST “congruification” analysis using 
secondary calibrations from node ages from Magallón 
et al. (2015), from which our fossil priors were derived, 
while Soltis et al. (2013) used penalized likelihood with 

four constraints clustered in the PWC. Not surprisingly 
then, most crown ages older in Soltis et al. (2013) versus 
this study are in the PWC, while most node ages younger 
in Soltis et al. (2013) versus this study are in the Core 
Saxifragales, particularly Crassulaceae and Saxifragaceae 
(Figure 4). Compared with Folk et al. (2019), the greatest 
outlying ages are found in Peridiscaceae and the PWC 
(Altingiaceae, Cercidiphyllaceae, and Hamamelidaceae). 
In all cases, equivalent node ages are younger in Folk 
et al. (2019). The discordances undoubtedly reflect 
topological differences between studies (see subsections 
4.1.1 and 4.1.2). Striking nodal divergence times between 
Folk et al. (2019) and this study are also found within 
Hamamelidaceae, all of which are again younger in Folk et 
al. (2019). This may be due to our conservative placement 
of the Hamamelidaceae prior on crown Hamamelidaceae 
instead of crown Hamamelidoideae. The divergence times 
for the Saxifragaceae alliance and crown Saxifragaceae we 
estimated are similar to Folk et al. (2019, 2021) but over 
30 MY older than the estimates from Deng et al. (2015). 
This major discrepancy is likely due to both a paucity of 
outgroup sampling (only two species of Liquidambar) as 
well as an inadequate calibration strategy by Deng et al. 
(2015). Nevertheless, apart from these few exceptions, 
the nearly equivalent ages across different datasets point 
to a growing consensus on divergence times within the 
order when similar or identical calibrations are used, 
especially once there is a clear consensus on interfamilial 
relationships in the PWC (see subsection 4.1.2).
4.2.1. Biogeographic origins 
Our ancestral range estimation accounts for the extant 
ranges of 115 of the 121 recognized genera in the order: 
either directly coded or represented by placeholders for 
their larger clade. The exact origin of the order remains 
unclear (Figure 2), as the most probable joint ancestral 
area does not seem plausible in light of area adjacency 
at the time of the crown divergence of Saxifragales 
(joint Central America + southern Africa + south Asia 
+ Australasian distribution at approximately 107 Ma). 
There are at least two issues playing a role in confounding 
a clearer reconstruction of the ancestral range of crown 
Saxifragales, Core Saxifragales, and to a lesser extent the 
Saxifragaceae alliance. First, a lack of suitable outgroups 
that help polarize the states in an adequate fashion. This is a 
general problem in studies of ancestral state reconstruction 
(Omland, 1999), but even more so at the phylogenetic 
scale investigated here, where orders are sister to large, 
polymorphic clades that possess all (or most) available 
character states which, in the case of Saxifragales, are all 
rosids. Second, the distribution of Cynomoriaceae, the sole 
member of Saxifragales excluded from this study, may have 
important implications for the historical biogeography of 
the order, or at least the Core Saxifragales and possibly 
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the Saxifragaceae alliance. Cynomoriaceae is an African/
Eurasian family that ranges from the Mediterranean to 
central Asia. Folk et al. (2019) clarified its phylogenetic 

placement to some extent, with the family certainly closely 
related to Core Saxifragales but less certainly placed within 
or around the clade as either sister to the Haloragaceae/
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and (B) Folk et al. (2019). Points represent crown ages of equivalent common ancestor nodes for a pair of tips in each study. The diagonal 
line represents where points should fall if common ancestor nodes are equal in age.
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Crassulaceae clade with 62% bootstrap support in the 
concatenated analysis of 301 nuclear loci or sister to all 
Core Saxifragales in the coalescent analysis of the same 
dataset with nearly full support. In either placement of 
Cynomoriaceae, given the ancestral area of the PWC, as 
well as some signal in the ambiguous reconstructions of the 
deepest nodes of the Saxifragaceae alliance, the plurality of 
the evidence argues for a Eurasian, and probably northern 
Asian origin of Saxifragales in whole or in large part. The 
deepest backbone divergences of Saxifragales are therefore 
best explained by diversification and stasis within a 
geographic realm, rather than explained by dispersal 
across landmasses (Figure 2).

Based on our stochastic mapping, movement outside 
of East Asia is best explained by founder events rather 
than vicariance sensu the BioGeoBEARS model, where 
vicariance is a cladogenetic event where a widespread 
ancestor diverges into two lineages that each occupies a 
subset of the wider range. In our analyses, as many as 77% 
of the cladogenetic events occurring > 50 Ma (excluding 
the oldest event at the root) are reconstructed as jump 
dispersal (founder) events (Figure 3). While uncertainty 
about ancestral range of major nodes of Saxifragales 
prevents us from making solid conclusions about the 
biogeographic processes at play, we argue that the origin 
of stem Peridiscaceae represents long distance dispersal 
from East Asia to west Africa approximately 107 Ma. 
Likewise, the origin of stem Haloragaceae/Crassulaceae 
clade in Australasia approximately 102 Ma most likely 
represents a long-distance dispersal event from east Asia, 
when these areas were even more separated than they 
are presently. Excluding Crassulaceae, our inference of 
historical biogeography in the clade is nearly identical to 
that of Chen et al. (2014) using the DEC model and nearly 
identical divergence time estimates for Haloragaceae, 
with reconstructions of deeper nodes not reported. The 
Australasian Aphanopetalaceae and  Tetracarpaeaceae 
therefore clearly represent relictual derivatives from an 
Australasian ancestor (Figure 2). Given their nearly identical 
distributions as coded in this study, any uncertainly about 
their relationships with Haloragaceae + Penthoraceae 
should not have any major effect on the ancestral ranges 
inferred at these nodes. Similarly, Deng et al. (2015) studied 
the historical biogeography of Saxifragaceae although they 
only used Grossulariaceae as an outgroup in their ancestral 
range estimation. Again, despite young ages in Deng et 
al. (2015) relative to this study, they found Saxifragaceae 
+ Grossulariaceae to be of Asian origin, with an either 
northern Asian or western North American origin along 
the backbone of Saxifragaceae, as we find in this study but 
with a slightly more predominant Asian signal. Folk et al. 
(2021; Figures S1 and S2), however, found Saxifragaceae + 
Grossulariaceae to be of North American origin, although 

this reconstruction was somewhat equivocal. Also, the 
geographic coding strategy used by Folk et al. (2021) 
differed from ours, which makes direct comparisons tricky. 
While our reconstruction is clear that these backbone 
nodes in Saxifragaceae must be one area or another and 
not a joint area, nearly equiprobable reconstructions of 
either area make it difficult to infer directionality, if any to 
movement between the two regions, although the results 
of stochastic mapping suggests that transitions to western 
North America from northern Asia are more common 
than the reverse (mean number of transitions 12.68 and 
5.90, respectively).

Finally, uncertainty about the biogeographic history 
of the deepest nodes of the Saxifragaceae alliance are 
confounded in two ways. The first is the distribution of 
Pterostemon, a clade with an extant distribution restricted 
to Mexico (Figure 2). This southwestern North American 
distribution as scored in our study is very rare in the order, 
not a range currently occupied by any close relatives, and 
is a distribution that is especially rare for such an ancient 
lineage (stem age approximately 61 Ma). Second, poor 
understanding of relationships in Grossulariaceae (see 
subsection 4.1.4) with apparent conflicting signal for 
northern Asia and northwestern North America at its 
crown, exerts some influence on the ancestral range of 
Grossulariaceae + Saxifragaceae. Nevertheless, a single area 
of origin for this clade is strongly favored, with a slightly 
greater chance of a northern Asian origin (Figure S1).
4.2.2. Patterns within disjunct distributions
The inter- and intrafamilial geographic diversity of 
Saxifragales makes it an interesting group in which 
to examine the timing and processes behind these 
events. In particular, the extant distributions of several 
families represent recurrent patterns that have fascinated 
biogeographers. Molecular analyses suggest that long 
distance dispersal is more likely to explain these patterns 
as opposed to vicariance via continental drift from 
both divergence times and formal analyses of historical 
biogeography. Similarly, our analyses suggest that these 
strikingly disjunct distributions are the result of long-
distance dispersal rather than vicariance. However, 
known divergence times coupled with an inference of the 
underlying directionality are in general agreement within 
relatively distantly related clades in Saxifragales, as well as 
with distantly related angiosperm lineages examined in 
other studies (Table 1). Although our sampling towards 
the tips is not exhaustive in many cases, our analyses still 
shed light on the minimum divergence times for these 
events, and still inform the likely type and directionality 
of these events.

In particular, the origin of South American 
Peridiscaceae is the result of a vicariance event from West 
Africa approximately 29 Ma following trans-Atlantic 
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anagenic dispersal along stem Peridiscus/Soyauxia after the 
origin of the stem lineage approximately 53 Ma. While it is 
difficult to estimate the exact timing of the dispersal event 
along the branch, such a dispersal window lines up with 
dispersal ages inferred from trans-Atlantic lineages within 
Annonaceae [approximately 38 Ma for the divergence of 
Cymbopetalum Benth./Trigynaea Schltdl. from Mkilua 
Verdc. (Thomas et al., 2015)], Lecythidaceae (24.4 Ma 
for the divergence of Asteranthos Desf. from African 
Scytopetaloideae [Rose et al., 2018]), Proteaceae (43.8 
Ma for the divergence of Brabejum L./Panopsis Salisb. ex 
Knight [Barker et al., 2007]), and Vitaceae (30–36 Ma for 
the divergence of members of Cissus L. s.l. [Nie et al., 2012; 
Liu et al., 2013]).

Our observed occurrences of amphitropical 
disjunctions are from across wide ranges of divergence 
times and only one corresponds to the classic disjunction 
of North America/South America [Cascadia nuttallii 
(Small) A.M. Johnson/Saxifragodes albowiana (Kurtz ex 
Albov) D.M. Moore]. This disjunction is not an artifact of 
taxon sampling, as these are the only two extant members 
of the Cascadia A.M. Johnson clade. Deng et al. (2015) 
reconstructed this node as representing a vicariance event 
following long distance dispersal. The crown age estimate 
for this clade by Deng et al. (2015) is much younger than 
ours (35.6; 95% HPD = 15.4–55.6) at 19.1 Ma (95% HPD 
= 11.0–27.9) but in either case, the timing of dispersal to 
South America is unusually old compared to other lineages 
(e.g., Wen and Ickert-Bond, 2009; Simpson et al., 2017), 
suggesting repeated occurrences of North American/
South American connectivity throughout the Tertiary.

Asian-North American disjunctions have probably 
been the best studied of all types of disjunctions, and the 
existing data has been reviewed multiple times. Within 
Saxifragales, 11 of the 20 infrafamilial disjunctions 
highlighted in Table 1 involve eastern Asia and North 
or Central America, with all but one jump dispersal 
event involving movement from Asia to the New World. 
The three European/North American disjunctions also 
involve close ancestors with east Asian affinities. Again, all 
inferred cladogenetic dispersal involves movement to the 
New World. Wen et al. (2010) surveyed the literature at 
the time and found that of eastern Asian-North American 
disjuncts, there was a strong signal of Old World to New 
World movement (62%–70% of events) and strong signal 

of Beringian rather than North Atlantic migration (56%–
79% of events). Within Saxifragales, the vast majority of 
events we highlight show movement from the Old World 
to New World and also show a Beringian rather than 
North Atlantic route, highlighting the importance of 
Beringian land bridges in the assembly of north temperate 
floras (Wen et al., 2016). In terms of timing, Wen et al. 
(2010, 2016) reported these disjunctions occurring in a 
wide timeframe from 89 Ma to the present but with most 
events < 20 Ma. Similarly, our results fall within this range, 
especially in the 5–20 Ma range (Table 1). Such frequent 
movement has been attributed to the presence of land 
bridges across both Beringia and the North Atlantic, 
although the strong directionality to this movement has 
yet to be explained. Long distance dispersal via air or water 
is also a possibility, but the dry capsular or follicular fruit 
of most Saxifragales (and all of those illustrated in Table 1) 
argues against such means of colonization.

5. Conclusion
This study clarifies the historical biogeography of 
Saxifragales with strong and clear support. While the 
ancestral range of the crown of the order is unclear based 
on our analyses, the preponderance of evidence clearly 
points to an east Asian origin, especially when the extant 
distribution of Cynomoriaceae is considered, as well as 
an important Australasian (but not Gondwanan) element 
which gave rise to multiple extant families. Both long 
distance dispersal and vicariance have played a role in 
shaping the extant distribution of Saxifragales, but our 
analyses clearly show that long-distance dispersal has 
been a more prevalent force, even at deeper nodes. Recent 
disjunctions are overwhelmingly explained by long-
distance dispersal and highlight the importance of land 
bridges during the Neogene. These land bridges strongly 
favored dispersal from East Asia to North America and 
shaped the flora of north temperate regions.
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